Abstrato

Study of a Metal-Organic Composite (Wx%Lig) for the Gamma Radiation Attenuation

Armando Cirilo de Souza,Jesualdo Luis Rossi,Francisco Carlos Cione,Noé Gabriel Pinheiro Machado,Aline Cardoso da Silva,Wallace Franco da Silva

The objective of this work was to use tungsten and lignin as precursors to produce a metal-organic composite (Wx%Lig) using different sintering processes. Tungsten is a refractory metal and was selected for the composite due to its superior physical and mechanical properties (mechanical strength, high melting point, and excellent cross section with thermal neutrons). Its choice is also justified because it is widely used for high-energy radiation shielding. Lignin extracted from lignocellulosic biomass was selected to be the organic precursor for the composite because it has multiple applications; it is used in the production of aromatics, adhesives, and as a phenolic resin replacement. Analysis of the composite was performed after sintering processes using a Nexview 3D optical surface profiler and analyse the gamma radiation attenuation coefficient using cobalt source (Co-60). Metal-organic composites in ratios of W5%Lig and W2.5%Lig were produced after different heat treatment processes. Then, the gamma attenuation coefficients of the composite samples in these rations were analysing. The gradient of the attenuation coefficient differed when standard tungsten and the composites of W5%Lig and W2.5%Lig were compared with free source Co-60.

Indexado em

Index Copernicus
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos
Geneva Foundation for Medical Education and Research
Secret Search Engine Labs

Veja mais