Abstrato

Steady State Stability Analysis of a CSI Fed Synchronous Motor Drive System with Damper Windings Included using ANFIS

Srikant Prasad, Manoj Kumar Jha, M. F. Qureshi,

The steady state stability analysis (SSSA) is done using small perturbation model. This study presents a detailed steady state stability analysis (SSSA) criterion based on small perturbation model of a adaptive neuro-fuzzy inference system (ANFIS) based current source inverter fed synchronous motor (CSIFSM) drive system taking d-axis and q-axis damper winding into account using ANFIS model. The modeling also clearly shows that even at no load the system satisfies steady state stability analysis (SSSA) criterion. Using the concept of Park‘s transformation the armature current in d-q model has been represented by suitable equations as a function of armature current magnitude in phase model (IS) and the field angle (β). As the system under consideration is basically a current source inverter fed system, IS has been considered as a constant and as a consequence the field angle (β) finally appears as a control variable. The modeling of the system has been done using adaptive neuro fuzzy inference system (ANFIS) by considering the input parameters; inductance (L) and inertia of the rotor (Jrotor) and output as steady state time. The analysis concludes that the absence of damper winding leads to instability of the machine system. This paper describes the fuzzy modeling of CSI fed synchronous motor for studying its steady state stability analysis. The effect of winding parameters on the steady state performance of the synchronous motor is incorporated in this study. Fuzzy models were developed using adaptive neuro-fuzzy inference system (ANFIS). It is observed that system Moment of Inertia (MI) has a significant effect on optimal winding inductance to achieve steady state operation in shortest period of time. The winding leakage inductance should be reduced for achieving steady state operation in shortest time.

Indexado em

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais