Abstrato

STATISTICAL FEATURE EXTRACTION TO CLASSIFY ORAL CANCERS

Anuradha.K, Dr. K. Sankaranarayanan

Oral Cancer is the most common cancer found in both men and women. The proposed system segments and classifies oral cancers at an earlier stage. The tumor is detected using Marker Controlled Watershed segmentation. The features extracted using Gray Level Co occurrence Matrix (GLCM) is Energy, Contrast, Entropy, Correlation, Homogeneity. The extracted features are fed into Support Vector Machine (SVM) Classifier to classify the tumor as benign or malignant. The accuracy obtained for the proposed system is 92.5%.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

Google Scholar
Academic Journals Database
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Electronic Journals Library
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais