Abstrato

Power and Area Minimization of Reconfigurable FFT Processor using Distributed Arithmetic

Anuradha M, Vishal R

Fast Fourier transforms is one of the most important frequency analysis in signal processing. It has different application such as image processing, medical field, communication system, spectral analysis etc. Butterfly is the basic elements of FFT. In this work a Distributed arithmetic technique is used to implement the butterfly module. Distributed arithmetic is Multiplierless technique resulted more efficient butterfly element both in terms of power and area. Butterfly element is the most important building block of Reconfigurable FFT processor. Single precision is used to represent the data. IEEE 754 standard is used to represent the floating point numbers.

Indexado em

Chemical Abstracts Service (CAS)
Google Scholar
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos IF
Electronic Journals Library
RefSeek
Hamdard University
World Catalogue of Scientific Journals
IndianScience.in
Scholarsteer
Publons
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais