Abstrato

Investigation of Doping Effects on Electronic Properties of Two Probe Carbon Nanotube System: A Computational Comparative Study

Khurshed A. Shah, Jehangir Rashid Dar

This paper reports the effect of various dopants on the electronic properties of Zig-Zag (4, 0) semiconducting single walled two probe Carbon Nanotube system using first principle calculations and Non-Equilibrium Green’s Function (NEGF) method. The modeled Zig-Zag (4,0) single walled Carbon Nanotube was doped with atoms of elements Tellurium (Te), Antimony (Sb), Arsenic (As) & Chromium (Cr) using Atomistic Tool Kit (version 13.8.1) software and its graphical interface (custom analyzer) Virtual Nanolab. The simulations were carried out in device mode using Density Function Theory (DFT) calculations. The current-voltage (I-V) characteristics & conductance of the four proposed models were studied for comparative study under low-bias conditions. The results show that Arsenic doping has increased the conductance of the model manifold than other doping atoms whereas Chromium doping has showed an amazing property of Negative Differential Resistance (NDR). Hence, we conclude that the proposed model is suitable for use in various CNT based high speed nanoelectronics applications including amplification, oscillation and arithmetic architectures.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais