Abstrato

Diversified Intrusion Detection with Various Detection Methodologies Using Sensor Fusion

K.Saleem Malik Raja, K.JeyaKumar

Various Intrusion Detection System (IDS) in the literature have shown that multiple classifier may be well versed in detecting the specific attack, but detecting different types of attack is low. In order to ensure high security this work focuses on multiple classifier fusion technique to increase detection rate. The primary role of classifier is to classify the correct and incorrect instance therefore multiple classifier design that is practical, and detects more attack by means of combining them is preferred here. To our best knowledge, this is the first design that considers multiple classifier in which all classifiers are different that detects both anomalies based and misuse based attacks. The dataset collected in a networking environment with the relatively high data density may contain attacks that assaults the system and thus violates system security. In this paper the operation of combining multiple classifiers that detects all categories of attack, from that improving the detection rate and true positive rate thereby reducing the false positive rate can be done. Decision based on threshold value and combining the classifiers result based on majority voting rule helps to increase the overall efficiency and accuracy in detecting the various categories of attack.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais