Abstrato

Analytical Modeling of Surface Potential in Dual Material Junction less Surrounding Gate MOSFETS

P.Suveetha Dhanaselvam, A.Nithya Ananthi

In this paper, a new surface potential model for dual material junctionless surrounding (DMJLSG) MOSFET is developed. As scaling of devices has become nanometer size, controlling the source/drain channel is a tedious process. Formation of junction leads to several challenges on doping concentration and thermal budget. In order to overcome this issues junctionless multigate MOSFET is introduced. Junctionless is a device that have similar structure like conventional MOSFET but it is normally a ON device with a homogeneous doping polarity and a uniform doping concentration across the channel, source and drain. Surrounding gate MOSFET has been regarded as one of the promising device due to its finer gate controllability around the channel. Junctionless surrounding gate is a very simple device to design as it eliminates junction implantation and annealing. In this paper, surface potential of dual material junctionless surrounding gate MOSFET is developed using Parabolic approximation method and its performance is analysed.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais