Abstrato

Analysis of Exhaust Emission, and Performance Characteristics of Single Cylinder CI Engine Fuelled With Palm Oil and CNG

Mahesh M.Patil , Dr.R.R.Arakerimath

The aim of present study is to analyze the performance, emission, and combustion characteristics of variable compression ratio (VCR), compression ignition (CI) engine using a suitable biodiesel as a fuel. The biodiesel is selected to conduct this experimental investigation is Compressed Natural Gas and Palm oil as a biodiesel in diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. In the present work an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode and then blended with palm oil to analyze the performance and emission characteristics of pure diesel, CNG substitution rates and blended. The results reveal that brake thermal efficiency, brake specific fuel consumption, of dual fuel engine is in the range of 20%-60% at the rated load of 2,4 and 6kg which is Brake thermal efficiency is higher than pure diesel engine for 20% ,40% and 60% CNG substitution rates and slightly less in B20,B40,and B60. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates but by applying biodiesel slightly grater than pure diesel due to its lower calorific value . It is found that there is drastic reduction in CO, CO2,and HC, emissions in the exhaust of dual fuel engine at all loads.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais