Abstrato

A Web Based Recommendation System for Personal Learning Environments Using Hybrid Collaborative Filtering Approach

Dr.K.Anandakumar, K.Rathipriya, Dr.A.Bharathi

The large growth of Web has influenced the generation of huge e-learning resources. This work is focused to devise a personal recommendation system that will address the sparsity and cold-start problems and that will provide a have a more diverse recommendation list for each learner. Here Improved Neighborhood- based Collaborative filtering and Hybrid Genetic algorithm with Particle Swarm Optimization (PSO) method is implemented. These techniques are employed for improving the diversity, and the convergence towards the preferred solution taking into account the preferences of users. The results obtained from the experiments show that the proposed method outperforms current algorithms in terms of accuracy measures and can alleviate cold-start and sparsity problems and generate a more diverse recommendation list as well

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Veja mais